
Chapter 3 :

Computer Science

Class XII (As per

CBSE Board) File
Handling

Visit : python.mykvs.in for regular updates

New

Syllabus

2019-20

File Handling

A file is a sequence of bytes on the disk/permanent storage where a

group of related data is stored. File is created for permanent storage

of data.

In programming, Sometimes, it is not enough to only display the data

on the console. Those data are to be retrieved later on,then the

concept of file handling comes. It is impossible to recover the

programmatically generated data again and again. However, if we

need to do so, we may store it onto the file system which is not

volatile and can be accessed every time. Here, comes the need of file

handling in Python.

File handling in Python enables us to create, update, read, and delete

the files stored on the file system through our python program. The

following operations can be performed on a file.

In Python, File Handling consists of following three steps:

 Open the file.

 Process file i.e perform read or write operation.

 Close the file.

Visit : python.mykvs.in for regular updates

File Handling

Visit : python.mykvs.in for regular updates

Types of File

There are two types of files:

Text Files- A file whose contents can be viewed using a text editor is called a text

file. A text file is simply a sequence of ASCII or Unicode characters. Python

programs, contents written in text editors are some of the example of text files.

Binary Files-A binary file stores the data in the same way as as stored in the

memory. The .exe files,mp3 file, image files, word documents are some of the

examples of binary files.we can’t read a binary file using a text editor.

Text File Binary File

Its Bits represent character. Its Bits represent a custom data.

Less prone to get corrupt as change

reflects as soon as made and can be

undone.

Can easily get corrupted, corrupt on

even single bit change

Store only plain text in a file.
Can store different types of data

(audio, text,image) in a single file.

Widely used file format and can be

opened in any text editor.

Developed for an application and

can be opened in that application

only.

Mostly .txt and .rtf are used as

extensions to text files.

Can have any application defined

extension.

File Handling

Visit : python.mykvs.in for regular updates

Opening and Closing Files-

To perform file operation ,it must be opened first then after reading

,writing, editing operation can be performed. To create any new file

then too it must be opened. On opening of any file ,a file relevant

structure is created in memory as well as memory space is created to

store contents.

Once we are done working with the file, we should close the file.

Closing a file releases valuable system resources. In case we forgot to

close the file, Python automatically close the file when program ends or

file object is no longer referenced in the program. However, if our

program is large and we are reading or writing multiple files that can

take significant amount of resource on the system. If we keep opening

new files carelessly, we could run out of resources. So be a good

programmer , close the file as soon as all task are done with it.

File Handling

Visit : python.mykvs.in for regular updates

open Function-

Before any reading or writing operation of any file,it must be

opened first

of all.Python provide built in function open() for it.On calling of

this function creates file object for file operations.

Syntax

file object = open(<file_name>, <access_mode>,< buffering>)

file_name = name of the file ,enclosed in double quotes.

access_mode= Determines the what kind of operations can be

performed with file,like read,write etc.

Buffering = for no buffering set it to 0.for line buffering set it to 1.if

it is greater than 1 ,then it is buffer size.if it is negative then buffer

size is system default.

File Handling

Visit : python.mykvs.in for regular updates

File opening modes-
Sr.

No

.

Mode & Description

1 r - reading only.Sets file pointer at beginning of the file . This is the default mode.

2 rb – same as r mode but with binary file

3 r+ - both reading and writing. The file pointer placed at the beginning of the file.

4 rb+ - same as r+ mode but with binary file

5 w - writing only. Overwrites the file if the file exists. If not, creates a new file for writing.

6 wb – same as w mode but with binary file.

7 w+ - both writing and reading. Overwrites . If no file exist, creates a new file for R & W.

8 wb+ - same as w+ mode but with binary file.

9 a -for appending. Move file pointer at end of the file.Creates new file for writing,if not exist.

10 ab – same as a but with binary file.

11 a+ - for both appending and reading. Move file pointer at end. If the file does not exist, it creates

a new file for reading and writing.

12 ab+ - same as a+ mode but with binary mode.

File Handling

Visit : python.mykvs.in for regular updates

File object attributes –
 closed: It returns true if the file is closed and false when the

file is open.

 encoding: Encoding used for byte string conversion.

 mode: Returns file opening mode

 name: Returns the name of the file which file object holds.

 newlines: Returns “\r”, “\n”, “\r\n”, None or a tuple

containing all the newline types seen.
E.g. Program

f = open("a.txt", 'a+')

print(f.closed)

print(f.encoding)

print(f.mode)

print(f.newlines)

print(f.name)
OUTPUT

False

cp1252

a+

None

a.txt

File Handling

Visit : python.mykvs.in for regular updates

The close() Method
close(): Used to close an open file. After using this method,an

opened file will be closed and a closed file cannot be read or written

any more.

E.g. program

f = open("a.txt", 'a+')

print(f.closed)

print("Name of the file is",f.name)

f.close()

print(f.closed)

OUTPUT

False

Name of the file is a.txt

True

File Handling

Visit : python.mykvs.in for regular updates

The write() Method
It writes the contents to the file in the form of

string. It does not return value. Due to buffering,

the string may not actually show up in the file

until the flush() or close() method is called.

The read() Method
It reads the entire file and returns it contents in

the form of a string. Reads at most size bytes or

less if end of file occurs.if size not mentioned

then read the entire file contents.

File Handling

Visit : python.mykvs.in for regular updates

write() ,read() Method based program
f = open("a.txt", 'w')

line1 = 'Welcome to python.mykvs.in'

f.write(line1)

line2="\nRegularly visit python.mykvs.in"

f.write(line2)

f.close()

f = open("a.txt", 'r')

text = f.read()

print(text)

f.close()

OUTPUT
Welcome to python.mykvs.in

Regularly visit python.mykvs.in

File Handling

Visit : python.mykvs.in for regular updates

readline([size]) method: Read no of characters from file if size is

mentioned till eof.read line till new line character.returns empty string

on EOF.

e.g. program
f = open("a.txt", 'w')

line1 = 'Welcome to python.mykvs.in'

f.write(line1)

line2="\nRegularly visit python.mykvs.in"

f.write(line2)

f.close()

f = open("a.txt", 'r')

text = f.readline()

print(text)

text = f.readline()

print(text)

f.close()

OUTPUT

Welcome to python.mykvs.in

Regularly visit python.mykvs.in

File Handling

Visit : python.mykvs.in for regular updates

readlines([size]) method: Read no of lines from file if size is

mentioned or all contents if size is not mentioned.

e.g.program
f = open("a.txt", 'w')

line1 = 'Welcome to python.mykvs.in'

f.write(line1)

line2="\nRegularly visit python.mykvs.in"

f.write(line2)

f.close()

f = open("a.txt", 'r')

text = f.readlines(1)

print(text)

f.close()

OUTPUT

['Welcome to python.mykvs.in\n']

NOTE – READ ONLY ONE LINE IN ABOVE PROGRAM.

File Handling

Visit : python.mykvs.in for regular updates

Iterating over lines in a file

e.g.program

f = open("a.txt", 'w')

line1 = 'Welcome to python.mykvs.in'

f.write(line1)

line2="\nRegularly visit python.mykvs.in"

f.write(line2)

f.close()

f = open("a.txt", 'r')

for text in f.readlines():

print(text)

f.close()

File Handling

Visit : python.mykvs.in for regular updates

Processing Every Word in a File

e.g.program
f = open("a.txt", 'w')

line1 = 'Welcome to python.mykvs.in'

f.write(line1)

line2="\nRegularly visit python.mykvs.in"

f.write(line2)

f.close()

f = open("a.txt", 'r')

for text in f.readlines():

for word in text.split():

print(word)

f.close()

OUTPUT
Welcome

to

python.mykvs.in

Regularly

visit

python.mykvs.in

File Handling

Visit : python.mykvs.in for regular updates

Append content to a File
f = open("a.txt", 'w')

line = 'Welcome to python.mykvs.in\nRegularly visit python.mykvs.in'

f.write(line)

f.close()

f = open("a.txt", 'a+')

f.write("\nthanks")

f.close()

f = open("a.txt", 'r')

text = f.read()

print(text)

f.close()

OUTPUT

Welcome to python.mykvs.in

Regularly visit python.mykvs.in

thanks

A

P

P

E

N

D

C

O

D

E

File Handling

Visit : python.mykvs.in for regular updates

Getting & Resetting the Files Position
The tell() method of python tells us the current position within the file,where as

The seek(offset[, from]) method changes the current file position. If from is 0, the

beginning of the file to seek. If it is set to 1, the current position is used . If it is set to 2

then the end of the file would be taken as seek position. The offset argument

indicates the number of bytes to be moved.

e.g.program
f = open("a.txt", 'w')

line = 'Welcome to python.mykvs.in\nRegularly visit python.mykvs.in'

f.write(line)

f.close()

f = open("a.txt", 'rb+')

print(f.tell())

print(f.read(7)) # read seven characters

print(f.tell())

print(f.read())

print(f.tell())

f.seek(9,0) # moves to 9 position from begining

print(f.read(5))

f.seek(4, 1) # moves to 4 position from current location

print(f.read(5))

f.seek(-5, 2) # Go to the 5th byte before the end

print(f.read(5))

f.close()

OUTPUT

0

b'Welcome'

7

b' to

python.mykvs.in\r\n

Regularly visit

python.mykvs.in'

59

b'o pyt'

b'mykvs'

b'vs.in'

File Handling

Visit : python.mykvs.in for regular updates

Methods of os module

1. The rename() method used to rename the file.

syntax

os.rename(current_file_name, new_file_name)

2. The remove() method to delete file.

syntax

os.remove(file_name)

3.The mkdir() method of the os module to create

directories in the current directory.

syntax

os.mkdir("newdir")

4.The chdir() method to change the current directory.

syntax

os.chdir("newdir")

5.The getcwd() method displays the current directory.

syntax

os.getcwd()

6. The rmdir() method deletes the directory.

syntax

os.rmdir('dirname')

e.g.program

import os

print(os.getcwd())

os.mkdir("newdir")

os.chdir("newdir")

print(os.getcwd())

File Handling

Visit : python.mykvs.in for regular updates

Absolute Path vs Relative Path
The absolute path is the full path to some place on your

computer. The relative path is the path to some file with respect

to your current working directory (PWD). For example:

Absolute path: C:/users/admin/docs/staff.txt

If PWD is C:/users/admin/, then the relative path to staff.txt would

be: docs/staff.txt

Note, PWD + relative path = absolute path.

Cool, awesome. Now, if we write some scripts which check if a

file exists.

os.chdir("C:/users/admin/docs")

os.path.exists("staff.txt")

This returns TRUE if stuff.txt exists and it works.

Now, instead if we write,

os.path.exists("C:/users/admin/docs/staff.txt")

This will returns TRUE.

If we don't know where the user executing

the script from, it is best to compute the absolute

path on the user's system using os and __file__.

__file__ is a global variable set on every Python

script that returns the relative path to the *.py file

that contains it.

e.g.program

import os

print(os.getcwd())

os.mkdir("newdir1")

os.chdir("newdir1")

print(os.getcwd())
my_absolute_dirpath =

os.path.abspath(os.path.dirname(__file__))

print(my_absolute_dirpath)

File Handling

Visit : python.mykvs.in for regular updates

Standard input, output, and error streams in python

Most programs make output to "standard out“,input from "standard in“, and

error messages go to standard error).standard output is to monitor and

standard input is from keyboard.

e.g.program

import sys

a = sys.stdin.readline()

sys.stdout.write(a)

a = sys.stdin.read(5)#entered 10 characters.a contains 5 characters.

#The remaining characters are waiting to be read.

sys.stdout.write(a)

b = sys.stdin.read(5)

sys.stdout.write(b)

sys.stderr.write("\ncustom error message")

